教师队伍
光电仪器研究所(按姓名拼音排序)
陈梦璐
性别:女
职称:准聘教授
学历:博士研究生
所在学科:仪器科学与技术
研究方向:红外光电技术,低维光电材料,探测与成像技术
教师介绍
1、个人简介
陈梦璐,入选国家级青年人才计划、北京市科技新星、中国科协“青年人才托举工程”,获国际先进材料协会科学家奖IAAM Scientist Medal(2022)、美国芝加哥大学杰出研究奖Yodh Prize(2019)等奖项。长期从事新型红外光电探测技术及低维材料物理性质的研究,主持国家自然科学基金、基础加强重点项目课题、国家实验室开放基金、国家研究中心开放基金、北京市科委项目等多项,在室温运行红外量子点光电探测器、带内跃迁窄带红外量子点探测器、长波及甚长波量子点红外探测器等方面均实现国际首创性突破。以第一或通讯作者发表包括Nature Materials,Light:Science & Applications(多篇),ACS Nano(多篇)等在内的SCI期刊30余篇。入选国际先进材料协会会士,任Materials期刊特刊编辑。培养学生中多人次获得国家奖学金等荣誉。
招收相关研究方向博士后(邮箱联系menglu@bit.edu.cn)
2、教育经历
2011.08-2015.07,中国科学技术大学,少年班学院,理学学士/严济慈荣誉学士
2014.05-2024.11,英国牛津大学 本科交换生
2015.10-2021.02,美国芝加哥大学,物理系,博士/博士后
3、工作经历
2021.04-至今,yl7703永利官网,教师。
4、研究领域
1.低维材料/纳米材料(量子点,钙钛矿等);
2.光电探测与成像(X-ray,紫外,可见光,红外);
6、代表性学术成果
[1] Xue, X.#; Hao, Q.#.; Chen, M. #* Very Long Wave Infrared Quantum Dot Photodetector up to 18 μm. Light: Science & Applications 2024 13, 89. https://doi.org/10.1038/s41377-024-01436-y.
[2] Xue, X. #; Chen, M. #*; Luo, Y.; Qin, T.; Tang, X.; Hao, Q.* High-Operating-Temperature Mid-Infrared Photodetectors via Quantum Dot Gradient Homojunction. Light: Science & Applications 2023, 12 (1), 2. https://doi.org/10.1038/s41377-022-01014-0(封面论文, ESI 高被引论文)
[3] Xue, X.#; Lv, H. #.; Qiu, Y.; Hao, Q.; Chen, M. * Thermally Stable High Carrier Mobility Nanocomposite Infrared Photodetector. APL Photonics 2024 9 (4): 046101. https://doi.org/10.1063/5.0194631
[4] Xue, X.#; Luo, Y.#; Hao, Q.#; Cao, J.; Tang, X.; Liu, Y.; Chen, M.* Low Dark-Current Quantum-Dot Infrared Imager. ACS Photonics 2023, 10 (12), 4290–4298. https://doi.org/10.1021/acsphotonics.3c01070
[5] Qin, T.#; Mu, G.#; Zhao, P.; Tan, Y.; Liu, Y.; Zhang, S.; Luo, Y.; Hao, Q.; Chen, M.*; Tang, X.* Mercury Telluride Colloidal Quantum-Dot Focal Plane Array with Planar p-n Junctions Enabled by in Situ Electric Field–Activated Doping. Science Advances 2023, 9 (28), 7827. https://doi.org/10.1126/sciadv.adg7827
[6] Chen, M.*; Hao, Q.*; Luo, Y.; Tang, X.* Mid-Infrared Intraband Photodetector via High Carrier Mobility HgSe Colloidal Quantum Dots. ACS Nano 2022, 16 (7), 11027–11035. https://doi.org/10.1021/acsnano.2c03631
[7] Lan, X.#; Chen, M.#; Hudson, M. H.; Kamysbayev, V.; Wang, Y.; Guyot-Sionnest, P.*; Talapin, D. V.* Quantum Dot Solids Showing State-Resolved Band-like Transport. Nature Materials 2020, 19 (3), 323–329. https://doi.org/10.1038/s41563-019-0582-2
[8] Chen, M.#; Lan, X.#; Tang, X.; Wang, Y.; Hudson, M. H.; Talapin, D. V.; Guyot-Sionnest, P*. High Carrier Mobility in HgTe Quantum Dot Solids Improves Mid-IR Photodetectors. ACS Photonics 2019, 6 (9), 2358–2365. https://doi.org/10.1021/acsphotonics.9b01050
[9] Chen, M.; Guyot-Sionnest, P.* Reversible Electrochemistry of Mercury Chalcogenide Colloidal Quantum Dot Films. ACS Nano 2017, 11 (4), 4165–4173. https://doi.org/10.1021/acsnano.7b01014
[10] Chen, M.; Shen, G.; Guyot-Sionnest, P. State-Resolved Mobility of 1 cm2/(Vs) with HgSe Quantum Dot Films. J. Phys. Chem. Lett. 2020, 11 (6), 2303–2307. https://doi.org/10.1021/acs.jpclett.0c00587
[11] Chen, M.*; Lan, X.; Hudson, M. H.; Shen, G.; Littlewood, P. B.; Talapin, D. V.; Guyot-Sionnest, P.* Magnetoresistance of High Mobility HgTe Quantum Dot Films with Controlled Charging. J. Mater. Chem. C 2022, 10 (37), 13771–13777. https://doi.org/10.1039/D1TC05202K(Journal cover)
[12] Zhang, S.#; Bi, C.#; Tan, Y.; Luo, Y.; Liu, Y.; Cao, J.; Chen, M.*; Hao, Q.*; Tang, X.* Direct Optical Lithography Enabled Multispectral Colloidal Quantum-Dot Imagers from Ultraviolet to Short-Wave Infrared. ACS Nano 2022, 16 (11), 18822–18829. https://doi.org/10.1021/acsnano.2c07586
[13] Zhao, X.; Tang, X.; Li, T.; Chen, M.* Trap-Mode PbSe Mid-Infrared Photodetector with Decreased-Temperature Processing Method. Infrared Physics & Technology 2023, 133, 104788.
[14] Chen, M.*; Xue, X; T. Qin; C. Wen; Q. Hao*; X. Tang*; Universal Homojunction Design for Colloidal Quantum Dot Infrared Photodetectors, Advanced Materials Technologies 2023,8, 2300315.
https://doi.org/10.1002/admt.202300315
[15] Lv, H.; Tang, X.; Chen, M.* Ionic Doping of CsPbI3 Perovskite Nanocrystals Improves Luminescence and Stability in Patterned Large-Area Light-Emitting Diodes. ACS Appl. Nano Mater. 2023, 6 (20), 18918–18925. https://doi.org/10.1021/acsanm.3c03358.
[16] Diroll, B. T.; Chen, M.; Coropceanu, I.; Williams, K. R.; Talapin, D. V.; Guyot-Sionnest, P.; Schaller, R. D.* Polarized Near-Infrared Intersubband Absorptions in CdSe Colloidal Quantum Wells. Nature Communications 2019, 10 (1), 4511.
[17] Tang, X.; Chen, M.; Ackerman, M. M.; Melnychuk, C.; Guyot-Sionnest, P*. Direct Imprinting of Quasi-3D Nanophotonic Structures into Colloidal Quantum-Dot Devices. Advanced Materials 2020, 32 (9), 1906590.
[18] Chen, M.; Shen, G.; Guyot-Sionnest, P.*; Size Distribution Effects on Mobility and Intraband Gap of HgSe Quantum Dots. J. Phys. Chem. C 2020, 124, 16216-16221.
[19] Luo, Y.; Zhang, S.; Tang, X.*; Chen, M.* Resonant Cavity-Enhanced Colloidal Quantum-Dot Dual-Band Infrared Photodetectors. J. Mater. Chem. C 2022,10 (21), 8218–8225.
[20] Xu, B.; Hao, Q.; Tang, X.; Chen, M.* High-Efficiency NP-Carbon Dots above 60% with Both Delayed Fluorescence and Room-Temperature Phosphorescence. Chem. Commun. 2023, 59 (90), 13474–13477. https://doi.org/10.1039/D3CC04158A
更新时间:2024年4月